Showing posts with label energy. Show all posts
Showing posts with label energy. Show all posts

April 26, 2013

The Robust and Evolving RNG Market in the European Union

By Jonathan Morissette and Karen Graham

This is the third in a series of blog posts that highlight the market and environmental potential of renewable natural gas (RNG). Check back over the next several weeks as we explore the issues and opportunities for RNG in the transportation sector.

Our previous two posts explored the processes behind renewable natural gas (RNG) that turn organic material – the same stuff we discard as compost or green waste – into a vehicle fuel that can power natural gas vehicles of all sizes: passenger vehicles, delivery trucks, buses and heavy duty (HD), long haul trucks. In this post we ask: Can RNG meaningfully contribute to the sustainability and energy security needs of the transportation sector?

Looking at the success stories of Europe’s RNG market leaders, it’s clear that the answer is yes. We profile two European nations leading the use of RNG in transportation: Sweden, where over 60 percent of the natural gas used to power their natural gas vehicle fleet (NGVs) is from renewable sources, and Germany, where at the end of last year 119 vehicle fueling stations offered 100 percent RNG.[1]

The long-term energy and transportation policies of the European Commission, together with national strategies and programs, have begun to shape the development of renewable and low-carbon fuels in Europe.

Sweden

RNG for transport is a key strategy in Sweden’s goal to achieve fossil fuel independence in its road vehicle fleet by 2030. EU directives require that 5.75 percent of total oil consumption in Sweden, and 20 percent of transport fuels, must be supplied from renewable sources by 2020.[2]

The Swedish biogas industry was initially formed to meet secure and sustainable heating fuel needs, but now transportation use has outstripped other applications. 43.9 percent of all produced biogas is used as transport fuel, the fastest growing sector for biogas, with a nearly equivalent share used for heating (the remainder is flared or for electricity generation).[3]

Over 60 percent of the methane used in Swedish NGVs is produced in local RNG plants. Over a dozen cities in Sweden have bus fleets fueled entirely by RNG. [4] At the end of 2011 there were over 130 public filling stations. Sweden’s NGV fleet is made up of 36,520 light duty vehicles, 1,530 buses and 550 HD trucks. Last summer Sweden’s first liquefied biomethane station opened in Lidköping to supply transport fuel for heavy duty vehicles.[5]

In a recent study, the total annual Swedish biogas production potential from waste and residual products has been estimated at 15.2 terawatt hours (TWh) of energy, the equivalent of just over 353 million gallons of diesel fuel. Other reports estimate that the Swedish potential for biomethane production from thermal gasification, primarily of forest wastes, is 59 TWh, equivalent to 1.37 billion gallons of diesel fuel.[6]

By the end of 2012, 119 natural gas filling stations across Germany offered 100 percent RNG (more than triple the total in 2011), and RNG blends were offered at 288 filling stations.

Germany

Germany is far and away the European leader in producing biogas and RNG. In 2012 Germany alone was responsible for 61 percent of all biogas produced in Europe. As of 2009 there were 7,090 biogas plants in Germany – 5,905 which were classified as agricultural. 80 percent of all RNG in Germany is produced from agricultural wastes.[7] The high proportion of agricultural biogas shows Germany’s potential for landfill expansion (to date, no biogas plants in Germany are supplied by landfill projects).[8]

In 2012 there were 84 RNG upgrade facilities, 82 of which inject their upgraded gas into pipeline networks.[9] While Germany lags Sweden in its RNG use for transportation, recent gains have been made. Last year, the share of RNG in natural gas for transport increased from 6 percent to over 15 percent, positioning Germany well to meet its national goal of 20 percent renewable gas in transportation by 2020.[10] By the end of last year, 119 natural gas filling stations across Germany offered 100 percent RNG (more than triple the total in 2011), and RNG blends were offered at 288 filling stations.[11]

These success stories show two ways of incorporating RNG into the transportation fuel mix at a commercial scale – Sweden’s use of a wide range of anaerobic sources, compared to Germany’s exclusive reliance to date on agricultural waste. If Germany harnesses its landfill gas sites as biogas sources, it has the potential to add even more renewable capacity using existing anaerobic technology. Both countries are continuing to develop biogas resources and the refuelling infrastructure that promote low-carbon, sustainable and secure transportation fuel networks in the coming years.



[1] NVGA Europe, “Markets & Statistics: Sweden”: available at http://www.ngvaeurope.eu/sweden last accessed March 28, 2013, and NGV Global, “Biomethane Fuel Gains Ground in Germany,” news article (March 31, 2013): available at http://www.ngvglobal.com/biomethane-fuel-gains-ground-in-germany-0331
[2] Vanciu, Gabriela and Nino Miresashvili, “Biogas Cars in Sweden: An Emerging Market,” Jonkoping University (May 2012).
[3] Ibid. (Biogas end-use: 43.90% for gas vehicles, 43.70% for heat, 8.10% flared, and 4.10% electricity; 0.20% being missing data).
[4] NVGA Europe, “Markets & Statistics: Sweden”: available at http://www.ngvaeurope.eu/sweden last accessed March 28, 2013.
[5] Ibid.
[6] Svensson, Mattias, Anneli Peterson and Jorgen Held, “Renewable Methane: An Important Aspect When Establishing a More Diversified Sourcing and Distribution of Energy Gas in Sweden” (2009).
[7] NGV Global, “Biomethane Fuel Gains Ground in Germany,” news article (March 31, 2013): available at http://www.ngvglobal.com/biomethane-fuel-gains-ground-in-germany-0331.
[8] AEBIOM, “European Bioenergy Outlook 2012”.
[9] Ibid.
[10] NGV Global, “Biomethane Fuel Gains Ground in Germany”.
[11] Ibid.

March 25, 2013

Renewable Natural Gas: Fueling Sustainable Transportation

Part 1: What is Renewable Natural Gas?

By Jonathan Morissette and Karen Graham 
Sustainable Energy Futures at Westport Innovations


This is the first in a series of blog posts that will highlight the market and environmental potential of renewable natural gas (RNG). Check back over the next six weeks as we explore the issues and opportunities for RNG in the transportation sector.

What is Renewable Natural Gas?

Renewable natural gas (RNG) is pipeline quality gas that can be used like fossil natural gas but is produced from what are called biogas and biomass feedstock sources, the technical term for any renewable, biological material such as plant matter or animal wastes. It can be a substitute for, or be blended with conventional natural gas for use in vehicle engines.

RNG is produced from a variety of sources, including:
  • Landfill gas 
  • Solid waste 
  • Municipal waste water 
  • Agricultural manure 
  • Forestry waste 
  • Energy crops 
RNG is produced in two ways: anaerobic digestion and thermal gasification.

Anaerobic digestion is the most commonly used and well-developed method. It requires only a low-oxygen environment for the organic matter to breakdown naturally by bacteria, and the equipment and process is commercially available.[i] This technique is best suited to using landfill and agricultural waste. The first biogas digester was built over 150 years ago, and the technology’s simplicity makes it appealing for a range of end uses who want alternative fuels, including transportation use. It’s in commercial use for transportation in parts of Europe, led by Sweden and Germany, and in the U.S., mainly California.

Thermal gasification is a mature and well-established industrial process developed to convert coal or organic matter into gaseous products by the application of high temperatures in oxygen controlled environments. Thermal gasification will help use promising second generation energy crops like poplar or willow trees and switchgrass. While thermal gasification of coal is a mature technology, thermal gasification of biomass into RNG is still pre-commercial with successful demonstration plants in Europe, and commercial scale implementation expected by 2020.[ii] 



The end product of organic matter breakdown is biogas, which is naturally discharged into the atmosphere where it contributes to smog and climate change (methane, carbon dioxide and nitrous oxide). Landfill sites are ideal for capturing and using biogas generated from decomposing waste. Many cities and smaller communities have developed projects to capture, clean and upgrade the biogas from their landfill sites. They use the RNG in their own applications (such as garbage pickup vehicles) or supply it to the pipeline grid. A benefit of RNG for transportation is that it turns waste (such as manure and food scraps) into usable vehicle fuel. By capturing these natural emissions before they enter the atmosphere, the air quality around the collection site is immediately improved and greenhouse gases (GHG) are reduced. Using RNG for transportation helps to reduce GHG emissions as the naturally-produced methane is converted to carbon dioxide, a less potent greenhouse gas.[iii]

Once produced and refined to pipeline quality RNG, this resource can serve any of the end-use applications that fossil natural gas does today. It can be compressed and dispensed as vehicle fuel, injected into pipeline networks, used to manufacture plastics or fertilizer, or liquefied for long-distance and heavy-duty transportation. Because RNG is interchangeable with fossil natural gas, the two fuels can be blended together in a range of proportions at either the pipeline or the pump. As long as RNG is pipeline (and vehicle engine) quality, it can be used wherever the market or regulatory environment supports it for transportation. In Sweden in 2011, 43.9 percent of all produced biogas was used as transport fuel, and in Germany some fueling stations offer 100 percent RNG for natural gas vehicles.[iv],[v]

Current estimates of RNG’s potential show the significant contribution it can make to fuel security and sustainability even in the near term. In the U.S. this renewable resource has been estimated at 4.8 trillion cubic feet, around 20 percent of total current U.S. natural gas consumption.[vi] Within the European Union, production is expected to reach 48bcm by 2020 with the potential for 200 bcm.[vii] 


[i] Brad Rutledge, “California Biogas Industry Assessment: White Paper,” WestStart-Calstart (April 2005):
http://www.calstart.org/Libraries/Publications/California_Biogas_Industry_Assessment_White_Paper.sflb.ashx 
[ii] Salim Abboud et al.,“Potential Production of Methane from Canadian Wastes,” Canadian Gas Association (October 2010):
http://www.cga.ca/publications/documents/PotentialProductionofMethanefromCanadianWastes- ARCFINALReport-Oct72010.pdf. 
[iii] United States Environmental Protection Agency, “Landfill Methane Outreach Program—Benefits of Landfill Gas Energy,” last updated September 2012, accessed March 2013: http://www.epa.gov/lmop/basic-info/index.html#a04
[iv] Gabriela Vanciu and Nina Miresashvili, “Biogas cars in Sweden: An emerging market,” Jönköping University (May 2012).
[v] NGV Journal, “Germany: 18 additional CNG filling stations now provide 100% biomethane,” last updated December 18, 2012, last accessed March 22, 2013.
[vi] National Petroleum Council, “Renewable Natural Gas for Transportation: An Overview of the Feedstock Capacity, Economics, and GHG Emission Reduction Benefits of RNG as a Low-Carbon Fuel,” (March 2012).
[vii] Floris van Foreest, “Perspectives for Biogas in Europe,” Oxford Institute for Energy Studies Working Paper series (December 2012).